If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+56x+60=0
a = 5; b = 56; c = +60;
Δ = b2-4ac
Δ = 562-4·5·60
Δ = 1936
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1936}=44$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(56)-44}{2*5}=\frac{-100}{10} =-10 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(56)+44}{2*5}=\frac{-12}{10} =-1+1/5 $
| 5x^2+56+60=0 | | .07x=1018-x | | X+18=2x+72 | | 140+p=3(100-p) | | z^2+6z+16=0 | | Y=47-3x | | (22-4n/5)+2=4 | | 4(9x+2)=26 | | 22-4n/5+2=4 | | R=140-0,8x | | R=140-1,4x | | R=140-0,4x | | x=135+5/37 | | 111x=15000 | | 111x=1500 | | 4-2s=-12 | | 9x+21x=1500 | | 90x+21x=15000 | | 3x(30+7)=15000 | | 19-(20-5x)=3x+(8-4x) | | X^2-x-384=0 | | 19-(20-5x)=3x(8-4x) | | 7x=24(180) | | 5y^2+5y-150=0 | | 7x=24+180 | | 15x=3x+180 | | 15x=3x+90 | | 15x=3x=180 | | 9(x+1)-36=7(x-10) | | 4(3y-5)=(11y+4) | | 15/2x=90 | | X+4+2x-7=90 |